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EXTENDED FREE NET ADJUSTMENT CONSTRAINTS 

H a i m  B. Papo2 
Nat iona l  Geodetic Survey 

Char t ing  and Geodetic Se rv ices  
Nat iona l  Ocean Se rv ice ,  NOAA 

Rockvi l le ,  Maryland 20852 

ABSTRACT. The c o n t r i b u t i o n  of  geode t i c  measurements t o  t he  
es tab l i shment  o f  a c o n t r o l  network can be p a r t i t i o n e d  i n t o  
g loba l  and local  ( i n d i v i d u a l )  components. The global 
component epitomized i n  a number of geometr ica l ly  
meaningful parameters  can be estimated toge the r  wi th  t h e  
i n d i v i d u a l  point coordinates, The additional rank defect 
created by the  ex tens ion  of the  parameter l ist is cor rec t ed  
by free n e t  adjustment c o n s t r a i n t s  that  are extended beyond 
those needed f o r  a s o l u t i o n  of the  network datum problem. 
Two a p p l i c a t i o n s  of extended free n e t  adjustment  are 
o u t l i n e d  and i l l u s t r a t e d  by elementary numerical  examples. 
A non-Cartesian ( s k e w )  r e fe rence  system discussed  i n  
appendix A provides  an exotic i n t e r p r e t a t i o n  o f  t he  
estimated global and ind iv idua l  parameters. I t e r a t i o n s  of  
t h e  extended free ne t  adjustment  are treated i n  appendix B ,  
f e a t u r i n g  two d i s t i n c t l y  d i f f e r e n t  sets o f  pre l iminary  
va lues  o f  t h e  parameters. 

1 .  INTRODUCTION 

Free n e t  adjustment  techniques  p lay  a major r o l e  i n  t h e  a n a l y s i s  of geode t i c  
networks. Optimal e r r o r  propagat ion p r o p e r t i e s  combined w i t h  a meaningful and 
unique datum t h a t  is es tab l i shed  without  i n t e r f e r i n g  with the  inner  geometry of  t he  
network (minimal c o n s t r a i n t s )  have made t h i s  method of  a n a l y s i s  extremely popular. 
Free n e t  adjustment  has been employed ex tens ive ly  i n  deformation a n a l y s i s  as well 
as i n  4-D (time dependent) a n a l y s i s  o f  geodetic networks. Thus far ,  however, i n  
a l l  i ts  forms and v a r i a t i o n s  it has been used exc lus ive ly  as a means for s o l v i n g  
t h e  inhe ren t  datum problem of the  geodetic network. A l i n e  has been drawn (Wolf 
1977, 1978) beyond which free n e t  adjustment c o n s t r a i n t s  have been cons idered  
inapp l i cab le .  Such a l i n e ,  real o r  imaginary,  is h igh ly  cha l lenging .  Recent 
s t u d i e s  i n  4-D a n a l y s i s  o f  geodetic networks by t h i s  au thor  have renewed i n t e r e s t  
i n  extending the  a p p l i c a t i o n  o f  free n e t  adjustment  c o n s t r a i n t s  beyond t h e  datum- 
de fec t - so lu t ion  barrier. 

'A s l i g h t l y  d i f f e r e n t  ve r s ion  o f  t h i s  paper was 
59 (41, 1985. 

'Prepared dur ing  a g ran t  per iod  (September 1984 

p u b l i s h e d  i n  B u l l e t i n  G;od&sique, 

through February 1985) while 
s e r v i n g  as a V i s i t i n g  Senior  S c i e n t i s t  i n  Geodesy, Nat ional  Research Counci l ,  
Nat iona l  Academy o f  Sc iences ,  Washington, D.C. 

Permanent address: Technion, Department of C i v i l  Engineering, Israel I n s t i t u t e  
of Technology, Technion C i t y ,  Haifa 32000, Israel. 
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Attention has been drawn by Wolf (1978) to  the so-called smearing effect i n  
adjustment computations where due to  inadequate modeling a deterministic part of 
the measurements is llsmearedll onto the residuals. A generalization of the same 
idea can be used as a start ing point for analyzing the contribution of geodetic 
measurements to  the establishment of control networks. It is well known that 
measured distances, for example, contribute implicitly t o  datum d e f i n i t i o n  (scale) 
of the network. 
of that contribution where conventionally the datum content of the measurements is 
tlsmearedll onto the control point coordinates. 
conventional approach is inadequate is encountered i n  4-D analysis of geodetic 
networks. I t  is often necessary t o  define datum i n  4-D by minimizing only the 
irregular part of the velocities of the reference po in t s  while obtaining parameter 
estimates of the systematic part. The above and other examples can be treated 
effectively by extending the conventional free net adjustment technique. 
solution as proposed i n  t h i s  paper is one of minimal constraints w i t h  complete 
freedom i n  selecting the function t o  be minimized for a specific datum definition. 

We may be interested i n  having an explicit quantitative estimate 

Another example where the 

The 

2. THEORETICAL MODEL 

Consider a set  of n measurements made wi th  the objective of obtaining the 
estimate of u parameters. 
parameters through a mathematical model, which when linearized around preliminary 
values of the parameters results i n  a system of observation equations: 

The measurements are expressed as a function of the 

L + V - C ' W  ( 1  1 

where C is the design matrix, W represents corrections t o  the approximate values of 
the parameters W o ,  L is the vector of differences between observed and computed 
measurements, and V is the vector of measurement corrections. 

If the measurements c o n s i s t  of d i s t a n c e s ,  e l e v a t i o n  differences, angles,  or 
azimuths ( b u t  not coordinates), and the parameters are coordinates of points i n  a 
network, it is w e l l  known t h a t  t h e  u parameters are nonestimable due t o  datum 
defect of the system of observation equations (Meissl 1982; Pope 1971). 

We make the following s impl i fy ing  assumptions: 

The geometry of the measurements is such that there are no configuration defects 
i n  a d d i t i o n  to  the datum defect (Welsch 1979). 

The number of measurements is redundant wi th  respect to  the number of estimable 
parameters, i.e., the inequality n>(u-d) is satisfied,  where d is the s ize  of the 
datum defect. 

As a means of analyzing the contribution of the measurements the vector W is 
partitioned into global and local (individual) components through the introduction 
of a vector of parameters Y that represents contribution of the measurements to  the 
global component of the point coordinates. The elements of Y are conceived as the 
parameters of a transformation w ( a  mapping of X onto W): 
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where 

xa = xo  + X ; Wa = W o  + W and Ya = Y o  + Y. 

The mapping w is gene ra l  (Koch and Pap0 19851, restricted only  by the  cond i t ion  
t h a t  D = a W / a X  has t o  be a square ,  f u l l  rank 'mat r ix .  
mapping, called a l s o  isomorphism, t h e  vec to r s  X and W are similar i n  s ize  and 
nomenclature (Wolf 1978; Shi lov  1980). S t r ang  (1977) d e f i n e s  t h e  two isomorphic 
spaces ( W  and X )  as d i f f e r e n t  and y e t  i d e n t i c a l  for "all algebraic purposes." X 
r e p r e s e n t s  po in t -coord ina te  c o r r e c t i o n s  where the  global con ten t  of  t i e  
measurements has been withheld.  An important  characteristic of  the parameters Y is 
their  complete i r r e l e v a n c e  t o  t h e  a c t u a l  datum defect of t h e  system of  obse rva t ion  
equat ions.  (See d i scuss ion  fo l lowing  equat ion  ( 5 ' ) . )  Their number ( f )  is l i m i t e d  
by the  inequa l i ty :  f< (u -d ) .  

I n  t he  s p e c i a l  case of a l i n e a r  

Addi t iona l  p r o p e r t i e s  of Y are d iscussed  below. 

The observa t ion  eqs. ( 1 )  are r e w r i t t e n  now i n  terms of  t h e  c o r r e c t i o n s  ( X , Y )  t o  
t h e  respective approximate va lues  (Xo,Yo). Those va lues  ( X o , Y o )  s e rve  f o r  t h e  
i n i t i a l  (zeroth)  i t e r a t i o n  of the s o l u t i o n  (Pope 1972).  Subsequently the adjusted 

parameters Xa and Ya are s u b s t i t u t e d  
is i terated u n t i l  convergence. 

L + V = C ( D , F )  

where 

f o r  

X 
Y 

Xo and Y o  r e spec t ive ly , ,  and the  s o l u t i o n  

X 
Y ( 1 ' )  

D ( Y o )  = aW/aX is a u by u f u l l  rank matr ix .  

F ( X o )  = aW/aY is a u by f matrix of f u l l  column rank. T h i s  
implies  t h a t  t h e  elements  of Y are 
independent . 

The rank of ( D , F )  is u. However, t he  rank of (A,B)  i n  eq. ( l o )  is on ly  u-d (same 

The s ize  of  t he  n u l l  space of ( A , B )  is thus  d+f ,  
as  t h e  column rank of C ) .  T h i s  means t h a t  t h e  number of estimable parameters i n  
the  extended system is still u-d. 
which means tha t  d+f l i n e a r  cond i t ions  between the  parameters are necessary  to  
o b t a i n  a minimally cons t r a ined  s o l u t i o n .  

The ( 1 ' )  system is p a r t i t i o n e d  while paying a t t e n t i o n  t o  the  s i ze  and n a t u r e  of 
its defects 

A. X, + A,,  XI, + A , ,  XI ,  + B Y = L + V (1")  

d f u-d-f f 

The A, mat r ix ,  which p e r t a i n s  t o  X,, is selected so that  t he  remaining par t  of A 
is of f u l l  (u-d) rank (Perelmuter  1979). The p a r t i t i o n i n g  process is cont inued by 

The f o u r  matrices 
A ,  ( A , B ) ,  ( A , , , A , , ) ~  and ( A , , , B )  span t h e  same u-d l i n e a r  space where only  the l as t  

. s e l e c t i n g  now A.,, so t h a t  t he  remaining ( A , , , B )  is of f u l l  rank. 
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two are  of f u l l  rank. 
dimensional subspace of ( A , B ) .  
dimensional l inear  subspace of ( A , B ) .  
it is f a i r ly  easy to  perform the above parti t ionings by following simple 
geometric considerations. 

The matrix A , ,  which is of f u l l  column rank spans a (u-d-f) 

We shal l  see i n  the following sections that 
I t  follows then that A , ,  and B span the same f-  

A t r i v i a l  minimally constrained solution is obtained by set t ing t o  zero X and 
0 

X 

however, is not unique. Each se t  of A O , A I O , A 1 l  would produce s l igh t ly  different 
parameter estimates (i, 'i) due t o  change of base (Pope 1971) and due t o  errors  i n  
the measurements. Transformation from one minimally constrained solution into 

and then solving for F,, and Y. The partitioning of the ( 1 ' )  sy s t em into ( l ' l ) ,  
1 0  

another is obtained 

where 

Note that p and q 

as  follows (Wolf 1977):  

= -  Y = Y  + 9  

is a vector of d datum transformation parameters, 
is a vector of f variations i n  the Y parameters, 
is a u by d matrix known as  Helmert's matr ix .  
Its columns span the n u l l  space of C. 
is a u by f m a t r i x  of f u l l  column rank which represents an 
apparent functional relationship between X and Y.  
However R is not a conventional matr ix  of par t ia l  derivatives 
as X and Y a re  independent by definition. 
dependency is enforced only as means of guaranteeing the 
invariance of V i n  sp i t e  of the introduction of the additional 
parameters ( Y) . 

The linear 

are small quantit ies of the order of the measurement errors. 

They are  l inearly independent which means that [ D - l E ,  R ]  is a f u l l  rank ( d + f )  

matrix. 

For both i ,?  and a,? to be minimally constrained solutions, V i n  ( 1 ' )  has t o  
-- 

remain invariant under the above transformation ( 3 ) .  
?,? (eq. ( 3 ) )  i n t o  t h e  r ight-hand s ide of ( 1 ' )  and equate: 

Substitute f i r s t  X , Y  and then 

Equation ( 4 )  ho lds  for an arbi t rary nonzero 1 I only  i f  
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which r e s u l t s  i n  

D-l 
(0, 1) Equation ( 5 l )  s i g n i f i e s  t h e  fact  t h a t  

A D-l E = C D D - 1  E = C E = O  (6 1 

is a basis of  t he  n u l l  

and 
C D R + C F = C ( D R + F ) = O .  

Equation (7 )  is differentiated w i t h  respect t o  

Equation (6 )  is well known and i d e n t i f i e s  E as a basis of the  n u l l  space of  t he  
C matr ix .  
p r o p e r t i e s  of p and q ,  leads to: R=-D F. Equation (5)  is w r i t t e n  aga in :  

A s o l u t i o n  o f  equat ion  (6'), which a l s o  complies w i t h  t he  s ta ted 
-1 

P r e s u l t i n g  in:  
q 

where D-'(E,-F) is a mat r ix  of f u l l  ( d + f )  rank. 
means that  Y cannot s u b s t i t u t e  f o r  t h e  datum parameters,  

The l i n e a r  independence o f  E and F 

space of the  ( A , B )  matrix (Koch and Pap0 1985). 

O f  a l l  t h e  minimally cons t r a ined  s o l u t i o n s  def ined  through eq. (3)  there is only  
one which satisfies t h e  following minimum condi t ion :  

iT i - min 

where 
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A 

Equations (8) represent d+f independent linear conditions between the X 
parameters which can correct the defects of the system. The first in (8) is the 
well known free-net adjustment constraints equation which corrects the datum 
defect. The second equation in (8) constitutes an extension of-the free-net 
constraints. It corrects the additional defect caused by the introduction of Y. 

Equations (8) are written again with H = (E,-F)(D-l)T, also substituting X+AX for 
A 

X: 

T T HT ; - O = H  X + H  AX 

T T  
and is used as a basis for defining the linear relationship between (Xo,Xlo) 

and XI, 
T 

where 

( 8 ' )  

It can be shown that due to the particular pattern of partitioning the square 

nonsymmetric matrix (Hi,H,,) T T .  is of full rank and has a regular inverse (Pope 1971 1. 
Equation 9 is substituted in ( 1 " )  resulting in the following full rank system. 
See also Pap0 and Perelmuter ( 1  9 8 3 ) .  

T According to appendix B, L is defined as: L - Lb - Lo -(Ao,Alo) (-I,G,,) AX. 
An estimate of XI,  and Y can be obtained now to be followed by evaluation of X, and 
X,, from eq. (9). 

A 

The condition to be satisfied by X can be defined also differently as follows 
( Wolf 1 977 ) : 

^T X Px X '9 min (7') 

where Px is a general, symmetric, positive-semidefinite matrix. 

may set: 

As an example we 

P =DTD. Matrix D ( Y o )  can be evaluated (eq. ( 1 ' ) )  from estimates of Ya X 
6 



obtained a t  the preceding iteration of the solution of normal equations. 
^T A ^T A choice of Px implies the minimization of W W instead of X 

particular properties of X ,  Px may assume the characteristics of an autocovariance 
matrix (Pope, personal communication, 1985) and bring u s  t o  the realm of 
collocation. 

Such a 
Depending on the X. 

See also Hein and Kisterman (1981). 

3. TWO APPLICATIONS 

The datum defect (d )  of an observational system depends on the dimension of the 
space and on the measurement types, Certain types of measurements have the 
potential for a dual contribution t o  the computation of a network as shown by Pope 
(personal communication, 1985) and also i n  Pap0 (1985). They con t r ibu te  i n  
determining the relative positions of the points and also i n  defining the datum of 
the network. Examples of such measurements are distances, azimuths, and elevation 
differences ( i n  a 3-D net). 

We denote by e the maximum datum defect of a system i n  i-dimensional ( i - D )  space 
where e=2,4,7 for i=l,2,3. I n  general we would have: d<e due t o  one or more of 
the above datum defining measurements. 

I n  the first application we seek t o  control the contribution of those 
measurements t o  the adjustment of a network by holding back their datum definition 
content. A s  an example we consider distances measured i n  2-D space. Their datum 
content is scale. The linear mapping ( w ( Y ) )  is.simple: 

W = Y X where Y = s . (10)  

The distinction between W and X Is that i n  X the datum content of the distances 
has been withheld while W contain the complete contribution of the measured 
distances. I n  the above 2-D case we have: 

d = 3  i f = l  9 d + f = e = 4  

D - I as well as A = C due t o  Yo = 1 

T T T 
H O  H l O  H l l  

Note that H is equivalent to  E of a 2-D system with a maximum (ems) datum defect. 
Overconstraining (e>d) is avoided by the introduction of YES as an unknown 
parameter. The estimated Y constitutes the contribution of the measured distances 
t o  defining the datum of the network. 
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The geometric considerations which assisted u s  i n  partitioning the X, A and H 
matrices are the same as one would use when selecting a basis for a t r i v i a l  
minimally constrained solution: 

The X o  = 
X 1  
y1 coordinate corrections set  to  zero define a datum, i.e., 
x2 

origin and orientation. The additional defect for scale (when s is 
defined as  unknown), is corrected by defining X - y and then set t ing 
it to zero. 

I n  the second application we define w as a 2-D 
(aff ine-symmetric) : 

I n  t h i s  case we are interested i n  holding back 
As before, contained i n  the measured distances. 

1 0  2 

linear transformation of X 

; Y =  

the homogeneous deformation signal 
W are coordinates based on the 

complete c o n t r i b u t i o n  of the  measurements whi le  X are based on the same 
measurements whose global deformation content, however, has been withheld. I n  the 
present case we have: 

d = 3  P f = 3  P 

HT - 

T 
H O  

T 
H I 0  

d +  f = 6 >  e =  4 

1 .... 
0 ..... 

-y, ..... 
-x, ..... 
0 ..... 

-yr ..... 
----_------- 

T 
H I  1 

P 

ET 

T -F 
(13) 

The estimated Y parameters represent the homogeneous deformation content of the 
measured distances. An exotic interpretation of X and Y is discussed i n  
appendix A. 

The geometric rationale i n  planning the partitioning is as follows: 
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As i n  t h e  first case, S e t t i n g  X,, t o  zero can d e f i n e  the datum. The deformation 
p a t t e r n  of the  network 1s defined ( f i x e d )  by s e t t i n g  t o  zero the X L 0  c o r r e c t i o n s .  
In  fact any t h r e e  non-collinear p o i n t s  i n  t h e  2-D network could provide a basis for 
minimally cons t r a in ing  t h e  solution. 

4. NUMERICAL EXAMPLE I N  2-D 

Let u s  have an elementary 2-D p lane  network composed of f o u r  po in t s .  Their  
pre l iminary  and s imula ted  ( t r u e )  Car t e s i an  coord ina te s  are shown i n  f i g u r e  1 and 
are also given i n  table 1. 

Table 1 .--Coordinates i n  a 2-D network 

i- j 

8 

" J  o+ 
3 

o+ 

Y 

2 +o i l +  

1-2 1-3 1-4 2-3 2-4 3- 4 

0.0000 0.2858 -0.0238 "0.0950 0.3257 0.0000 

(0 1 
Pre l iminary  

( Fixed 
X Y 

L 

-1 0 -1 0 
-1 0 10 

10 10 
10 -1 0 

-1. 1 * 7  1. 1. - e  3 .O 

True  
X Y 

-1 0 -1 0 
-1 0 9 

1 1  11 
1 1  -9 

Figure 1 .  A 2-D network. 

A l l  s i x  d i s t a n c e s  have been measured as shown i n  t he  first two rows of table 2. 

For E are the s imula ted  ( t r u e )  errors i n  the s e n s e  9neasured minus c equa l  t rue.ff  
s i m p l i c i t y  t he  weight mat r ix  was assumed t o  be a (6  by 6 )  u n i t  matr ix .  

.1216 -.1801 a 1273 .1281 -. 1681 -1155 I V 

The fundamental tlOrt s o l u t i o n  was made t o  s e r v e  as a re fe rence .  T h i s  was a 
s t anda rd  free n e t  adjustment  SOlutlOn with d - 3: ( 2 )  for o r i g i n  and ( 1 )  for 
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orientation. 
f = 0, 'i.e., without any additional parameters Y. 
show, respectively, the estimated corrections t o  the measured distances after three 
iterations of the solution and the i n i t i a l  (zeroth iteration) differences between 
observed and computed distances. 

I t  may be helpful t o  regard t h i s  solution as a special case w i t h  
The l a s t  two rows i n  table 2 

Solutions rlI1t and 111111 made use of the extended free net adjustment method 
following the formulation given i n  section 3.  
three solutions. 
constrained solutions. 
significant d i g i t s  i n  V ,  X, and Y. 

Table 3 presents the results of a l l  

Two to  three iterations were necessary to  converge to  five 
The corrections V remained invariant as expected of minimally 

Table 3. --Results of l lO.ll ,  11111, and I 1 I I l 1  solutions 

Preliminary Estimated corrections 
Parameters value 11011 11 Ill 11 11 11 

X 1  

Y 1  

x2 

Y2 

X 3  

Y, 

x4 

Y 4  

S 

-1 0 

-1 0 

-1 0 

10 

10 

10 

10 

-1 0 

1 

-0.9148 

.0943 

-.1953 

- -7976 

.8986 

.4036 

-2115 

2998 

-0.6923 

.2962 

-01 25 

- .9852 

-6765 

a 1 9 1 5  

-0033 

.4975 

-0208 

-0 01 65 

.2604 

.0166 

- .2612 

- .0157 

2483 

-0157 

- .2475 

-0555 

- 00191 

-0351 

XT x 2.6251 2 2797 0.2600 

From the value of s i n  solution 11111 we learn that the distances define a scale 
for t h e  network which is larger by about 2 percent as compared to scale defined by 
the preliminary coordinates. 
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The i n t e r p r e t a t i o n  of the  r e s u l t s  of s o l u t i o n  I t I I t t  is more involved. The 
estimated l i n e a r  t r ans fo rma t ion  matr ix  (see eq. 12) r e p r e s e n t s  the  deformation 
p a t t e r n  o f  t he  network as reflected i n  t he  measurements ve r sus  t h e  geometry of  the 
pre l iminary  coord ina tes .  The circle (p re l imina ry )  and the  ell ipse of d i s t o r t i o n  
shown i n  f i g u r e  1 i l l u s t r a t e  t he  r e s u l t s  of s o l u t i o n  llII1l. The major a x i s  of the  
e l l ipse  is i n c l i n e d  with respect t o  t h e  x a x i s  by 21.O65. The maximum and minimum 
scale f a c t o r s  are 1.070 and 0.967, r e s p e c t i v e l y .  For an exotic i n t e r p r e t a t i o n  o f  
tlII1t, see appendix A .  

5. CONCLUSIONS 

Geodesy of  t h i s  past decade has been dominated by the emergence and 
es tab l i shment  of obse rva t iona l  systems o f  a growing v a r i e t y  and redundancy i n  their 
p o t e n t i a l  for determining geode t i c  networks of global ex ten t .  C o n f l i c t s  and 
apparent  d i sc repanc ie s  between the  datum con ten t  of d i f f e r e n t  o b s e r v a t i o n a l  systems 
t h a t  are d iscussed  i n  the  geodetic l i t e r a t u r e  can be analyzed and e f f e c t i v e l y  
c o n t r o l l e d  by the  a p p l i c a t i o n  of the  extended free n e t  adjustment  approach. 
should be noted t h a t  no information is lost  by t h e  proposed method of adjustment.  
Following the inspection, evaluation, and.eventua1 approval of the Y parameters, 
t h e  t ransformat ion  w can be performed on t h e  X coord ina te s  i n  order t o  o b t a i n  t h e  
convent iona l  W. I t  appears tha t  extended free. n e t  adjustment c o n s t r a i n t s  can 
provide y e t  another  s o l u t i o n  t o  t h e  llsmearingll problem i n  geodet ic  networks which 
is discussed  i n  Wolf (1978).  

I t  

I n  4-D a n a l y s i s  of  geode t i c  networks there are s e v e r a l  p rospec t ive  a p p l i c a t i o n s  
of  t h e  proposed method. With t h e  i n e v i t a b l e  improvement i n  measurement accuracy,  a 
stage is reached where'no po in t  i n  the network can be cons idered  as devoid of 
r e l a t i v e  motion. I n  l e v e l i n g  we have had t h i s  s i t u a t i o n  for somg time. If the 
r e l a t i v e  motion of a l l  p o i n t s  i n  a network is s i g n i f i c a n t l y  d i f f e r e n t  from zero, it 
becomes practically impossible t o  de f ine  criteria for s e l e c t i n g  a subse t  of stable 
r e f e r e n c e  poin ts .  The extended free ,ne t  adjustment  approach coupled wi th  a 
modified and f l e x i b l e  s ta t i s t ica l  nul l -hypothes is  procedure as proposed by Pope 
( p r i v a t e  communication, 19851, and also shown i n  Koch (1984) ,  is bound to  tackle 
the  above problem and provide an acceptable s o l u t i o n .  
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APPENDIX A.--SKEW REFERENCE SYSTEMS 

This appendix will attempt to give an exotic interpretation of the solution of an 
observation equations system under extended free net adjustment constraints. 

Let us have spatial distance measurements made in 3 - D  space with the objective of 
The 3-D reference system estimating positional coordinates of a network of points. 

in which those coordinates are to be defined is not a conventional Cartesian 
coordinate system. The basic triad of the reference system is not orthonormal: 
its axes are mutually nonorthogonal and scale is different along each axis. We 
will denote it as a skew coordinate system. 

The position of a point P in the skew system is defined by three coordinates (as 
is usual in 3 - D ) .  
is the point of origin): 

The position vector of point P (3)' is evaluated as follows (0 

where the three basis ffunitff vectors 1, 3, are of different lengths. 

The datum in such a coordinate system is defined by e = 12 parameters: 

three 
three 
three 
three 

for origin 
for orientation 
for scale 
for nonorthogonality of axes 

Spatial distances (measured in 3 - D  space) are known to reduce the datum defect of 
scale in a Cartesian system. In a skew reference system, measured distances of a 
minimum of six mutually nonparallel lines, which are also not parallel t o  the same 

nonorthogonality defects bringing the remaining defects to six, the same as in a 
Cartesian system. 
geodetic measurements which are devoid of any datum content. 
however, in a 3-D Cartesian system the measurement of spatial angles does not 
contribute to datum definition. 

plane  ( n o  conf igurat ion  d e f e c t s ) ,  would reduce  t h e  t h r e e  scale and t h r e e  

In a 3-D skew reference system there are no conventional 
As is well known, 

Following the examples in section 3 we define Y as the estimable datum parameters 
of a skew coordinate system. In a 3 - D  observational system of spatial distances we 
have : 

d = 6, e = 1 2 ,  and f = e - d - 6  

The elements of Y are thus the six estimable datum parameters: three for scale and 
three for nonorthogonality as follows: 

Y =  

scale in x 
scale in y 
scale in z 
nonorthogonality between y and z 
nonorthogonality between x and z 
nonorthogonality between x and y 
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The mapping w is the  l i n e a r  (symmetric) t ransformat ion  formula: 

U 
V 
W 

X x o o o z y  
g6 g2 g b  y o y o z o x  Y = F i Y  
e 5  g4 e, Z o o z y x o  

gl g6 g5 

where (x ,y , z ) ,  are t h e  coord ina te s  of po in t  Pi i n  a skew coord ina te  system that  is 

def ined  i n  scale and nonorthogonal i ty  o f  axes  by the  elements  of Y. 

of Y are estimable from least s q u a r e s  processing of t h e  measurements. The  

remaining s i x  datum parameters for o r i g i n  and o r i e n t a t i o n  are nonestimable. 

The elements  

The 

1 0 0  
0 1 0  
0 0 1  

1 0 0 
----------- 
a . .  ... ... 

remaining defect is corrected by s i x  

adjustment  c o n s t r a i n t s :  E X = 0) .  

Y O T  = ( l , l , l , O , O , O )  and so D = I. 

T A  

X 

y : - Y l  
-2 o1 -x 

o1 z y1 -xl 
0 z2 -y2 -x2 0 0 0 -z2 cy2 X 

-x 0 0 0 -2 

1 

o1 -yl 0 1 
O1 0 ' 0 -zl -Y1 -xl 

O E1 -yl 
X 1 'Z 

-------------- -------------- ----------------- 
. a .  ... ... . . . . . . . . . ... . a .  ... 

l i n e a r  c o n s t r a i n t s  ( for  example free n e t  

Note tha t  for t h e  i n i t i a l  ( z e r o t h )  i t e r a t i o n  

The H mat r ix  i n  3-D has the fol lowing s t r u c t u r e  (Papo 1985): 

H (E,-F) = 

H i n  2-D is ob ta ined  from t h e  above H by d e l e t i n g  columns and rows which con ta in  
or p e r t a i n  t o  zi. 

Appendix A concludes by examining the  r e s u l t s  of t h e  numerical  example i n  
s e c t i o n  4 .  The X coord ina te s  o f  s o l u t i o n  ffIIff  are defined i n  a 2-D s k e w  r e f e r e n c e  
system. 
below. Un i t s  gf scale a long  t h e  two axes  ( l e n g t h s  of the  %mit f f  v e c t o r s )  i n  terms 
of the  scale implied by the  pre l iminary  coord ina te s  are: 

The parameters of t h a t  system are de r ived  frm t h e  estimated Y as shown 

s 1 + 0 1.05550 
X 

s a 1 + g, 0.98093- 
Y 

The angle  e between the x and y axes  is computed from gs as follows: 

e - arccos ( 2  g s )  - 85.097. 
I t  can be shown that t h e  network obta ined  by p l o t t i n g  the a d j u s t e d  X coord ina te s  

i n  t h e  above skew coord ina te  system is geomet r i ca l ly  equ iva len t  t o  t he  one obta ined  
by p l o t t i n g  W of the same po in t s  i n  a Car t e s i an  system. 
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APPENDIX 8.--ITERATIONS OF THE EXTENDED FREE-NET ADJUSTMENT SOLUTION 

x o  + 
Y O  Y 

The theory o f  free n e t  adjustment  is usua l ly  presented  without  cons ider ing  the  
need for i t e r a t i n g  the s o l u t i o n .  I n  most cases, however, the mathematical model of 
the  measurements is cons iderably  nonl inear  and so a s i n g l e  s o l u t i o n  (zeroth 
i t e r a t i o n )  is u s u a l l y  inadequate.  

is used as a basis f o r  

I n  the case of a f u l l  rank observa t ion  equat ion  system our  only  concern is t o  
avoid  Pope's l t p i t f a l l s l l  (Pope 1972). 
mathematical model is such tha t  t he  observables  can be expressed as an e x p l i c i t  

f u n c t i o n  of the  parameters Xa and Ya. 

Assume for s i m p l i c i t y  tha t  t he  nonl inear  

L i n e a r i z a t i o n  is performed about  a set  of 

Xa 

Ya 
is taken  equal  t o  the  previous  

approximate va lues  X o  and Y o  which are chosen 
second-and higher-order  terms i n  the  Tay lo r ' s  

- - Xa 

Ya 
could be neglected.  Each s o l u t i o n :  

a s  
Y 

X O  

Y O  

another  i t e r a t i o n  where t h e  new 

approaches zero.  

"closett t o  Xa and Ya so t ha t  the  

expansion would come o u t  small and 

Xa 

Ya 
"Well-definedft problems converge u s u a l l y  af ter  a few i t e r a t i o n s  t o  a stable 

I n  case of a r ank-de f i c i en t  system (due t o  t he  need f o r  datum d e f i n i t i o n )  there 

is a pre l iminary  set o f  parameter va lues  Xr which s e r v e s  as  a basis f o r  datum 

d e f i n i t i o n  (Papo and Perelmuter  1985). The datum of Xr is t r a n s f e r r e d  t o  t h e  

ad jus t ed  Xa through t h e  fol lowing condi t ion :  

(xa - xr = min. ( B . 1 )  
r T  (xa - x ) 

Note that  Xr is f i x e d ,  u n l i k e  X o  which changes 
s o l u t i o n .  

Begin with t h e  obse rva t ion  equat ions  ( l l ) :  

V + L b - L o -  ( A  , B )  l x  

w i t h  each i t e r a t i o n  of the  
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where 

x = xa - x o  and Y = ya - Y O .  

Helmert's condition ( B . 1 )  is transformed into d+f extended free Let adjustment 
constraints as follows: 

HT i = O  

where 

A 

X - X + AX and AX - X o  - Xr. 
* 

Substitute for X in (B.2)  and partition as in ( 1 " )  with the result: 

from which the following linear relationship is derived: 

where GT = -(HT, HT )-' HT as defined in equation (9). 
1 1  0 1 0  1 1  

Substitute ( B . 3 )  into ( 1 ' )  and regroup with the result: 

( B . 2 )  

(B.2' 

which is written in compact form as equation (11'1) 

r As stated in Pap0 and Perelmuter (1985) the difference AX - Xa - X can assume 
any magnitude without impairing the linearization of the mathematical model of the 
measurements. 
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